Translated from Russian

St.Peterburg State Unitary Enterprise of Municipal Electric Transport GORELEKTROTRANS Syzranskaya Str. 15, St.Petersburg, 196105 388 70 00, fax 388 78 41 December 17, 2010, № 1.24-1207

to Acting Chairman of Transport Committee D.N. Snamensky

Dear Dmitry Nikolayevich,

In response to the offer of Innovatsionnye Technologii JSC to use innovative NanoProtech product:

Test period is from September 27, 2010, to December 07, 2010.

Weather conditions: average November temperature is 4-6 °C, rain, wind, average December temperature is -6 °C, snow wind.

Trolleybuses: 1741, travel 12551 km, route 42 (test starting from September 27, 2010)

1732, travel 4815 km, route 24

- 1756, travel 36331, route 3
- 1755, travel 3808 km, route 3

Efficiency tests of NanoProtech Electric protective coating for moisture and corrosion protection are performed in separate structural division Trolleybus Depot 1 of St.Petersburg State Unitary Enterprise of Municipal Electric Transport. For that purpose, Protective coating was applied to electric equipment of trolleybuses:

- 1. Electric traction commutator motor DK-210/213 positioned under trolleybus floor. The coating was applied onto internal motor surfaces through access hatches (without motor dismounting).
- 2. Compressor motor DK 408/410 positioned under trolleybus floor. The coating was applied onto internal motor surfaces through access hatches (without motor dismounting).
- 3. Starting and braking rheostat KF-51G positioned on trolleybus roof. The coating was applied onto rheostat case insulator surface.

Test results are given in the Tables:

Trolleybus № 1741, ZiU 9

Insulation resistance	Before application of coating, Sep.27, 2010	After application of coating, December 07,
	0, 1, ,	2010
Anchor winding – motor housing	10 kOhm	423 MOhm
Serial winding – frame	20 kOhm	410 MOhm
Parallel winding – frame	20 kOhm	500 MOhm
Rheostat sections – rheostat case	5 MOhm	124 MOhm
(pins)		

Trolleybus № 1755, ZiU 9

<i>Trolleybus № 1755, ZiU 9</i> Insulation resistance	Defense en liestien ef	
Insulation resistance	Before application of coating, Nov.03, 2010	After application of coating, December 07, 2010
Motor anchor winding – motor housing, MOhm	100	392
Serial winding – trolleybus frame, MOhm	100	380
Parallel winding – trolleybus frame, MOhm	70	464
Winding of trolleybus frame compressor motor, MOhm	0.35	263
Rheostat sections – rheostat case (pins), MOhm	16	18.6
Trolleybus №1756, ZiU 9		
Insulation resistance	Before application of coating, November 03, 2010	After application of coating, December 07, 2010
Motor anchor winding – motor housing, MOhm	100	85
Serial winding – frame, MOhm	100	110
Parallel winding – frame, MOhm	120	154
Winding of trolleybus frame compressor motor, MOhm	0.65	114
Rheostat sections – rheostat case (pins), MOhm	40	91
Trolleybus № 1732, ZiU 9		
Insulation resistance	Before application of coating, November 03, 2010	After application of coating, December 07, 2010
Anchor winding – motor housing, MOhm	30	33
Serial winding – frame, MOhm	500	480
Parallel winding – frame, MOhm	500	550
Winding of trolleybus frame compressor motor, MOhm	500	226

Summary and suggestions:

- 1. Application of NanoProtech Electric protective fluid in electric circuits of traction motor, compressor motor and starting and brake rheostat of the trolleybuses under test resulted in insulation resistance increase in 8-10 time at ambient temperature above zero, while at temperature below zero insulation resistance in electric circuits was naturally reduced.
- 2. Monitoring of the state of electric equipment coated with NanoProtech Electric fluid will be continued.

Chief engineer of Gorelektrotrans <signature> F.I. Tsvetkov

I.I. Morozov	
9514128	
<signature></signature>	

Central Translations Bureau Znanije.

December 30, 2010. Saint-Petersbutg

Санкт-Петербургское государственное унитарное предприятие городского электрического транспорта

СПб ГУП «ГОРЭЛЕКТРОТРАНС»

196105.Санк-Петербург, Сызранская ул., дом 15 388 15 13. факс 388 23 15

07.12.10 Nº 1.24-1207

Исполняющему обязанности Председателя Комитета по транспорту

Д. Н. Знаменский

Уважаемый Дмитрий Николаевич!

На предложение компании ООО «Инновационные технологии», о применении инновационного продукта NanoProtech сообщаю:

Период испытания - с 27.09.10 г. по 07.12.10 г.

Погодные условия: средняя температура ноября 4÷6[°]C, дождь, ветер, средняя температура декабря -6°С, снег, ветер

Троллейбусы: 1741, пробег – 12551 км, маршрут – 42 (испытания с 27.09.2010 г.);

1732, пробег – 4815 км, маршрут – 24;

1756, пробег – 3631 км, маршрут – 3;

1755, пробег – 3808 км, маршрут – 3.

В ОСП «Троллейбусный парк № 1» СПб ГУП «Горэлектротранс» проводятся испытания эффективности применения защитного покрытия NanoProtech Electric- защита от влаги и коррозии. С этой целью защитное покрытие нанесено на электрооборудование троллейбусов:

- 1. Размещённый под полом троллейбуса тяговый коллекторный электродвигатель ДК-210/213. Средство нанесено на внутренние поверхности двигателя через смотровые лючки (без снятия двигателя).
- 2. Двигатель компрессора ДК 408/410, размещённый под полом троллейбуса. Средство нанесено на внутренние поверхности двигателя через смотровые лючки (без снятия двигателя).
- 3. Размещённый на крыше троллейбуса пускотормозной реостат КФ-51Г нанесено на поверхность изоляторов каркаса реостата.

Результаты испытаний приведены в таблицах:

Сопротивление изоляции До нанесения по-После нанесения крытия 27.09. 10 г. покрытия на 07.12.2010 г Обмотка якоря-корпус двигателя 10 кОм 423 MOM Последовательная обмотка-корпус 20 кОм 410 MOM Параллельная обмотка-корпус 20 кОм 500 MOM Секции реостата-каркас реостата (шпильки) 5 MOM 124 MOM

Троллейбус инв. 1741 мод. ЗиУ 9

Троллейбус инв. № 1755 мод. ЗиУ 9

Сопротивление изоляции	До нанесения по- крытия 03.11.10 г.	После нанесения покрытия на 07.12.2010 г.
Обмотка якоря двигателя-корпус двигателя, MOM	100	392
Последовательная обмотка-корпус троллейбу- са, МОМ	100	380
Параллельная обмотка-корпус троллейбуса, MOM	70	464
Обмотка двигателя компрессора корпуса трол- лейбуса, МОМ	0,35	263
Секции реостата-каркас реостата (шпильки), МОМ	16	18,6

Сопротивление изоляции	До нанесения по- крытия 03.11.10 г.	После нанесения покрытия на 07.12.2010 г
Обмотка якоря-корпус двигателя, МОМ	100	85
Последовательная обмотка-корпус, МОМ	100	110
Параллельная обмотка-корпус, МОМ	120	154
Обмотка двигателя компрессора корпуса трол- лейбуса, МОМ	0,65	114
Секции реостата-каркас реостата (шпильки), МОМ	40	91

Сопротивление изоляции	До нанесения по- крытия 03.11.10 г.	После нанесения покрытия на 07.12. 2010 г.
Обмотка якоря-корпус двигателя, МОМ	30	33
Последовательная обмотка-корпус, МОМ	500	480
Параллельная обмотка-корпус, МОМ	500	550
Обмотка двигателя компрессора корпуса трол- лейбуса, МОМ	500	226

Выводы и предложения:

- На подконтрольных троллейбусах в результате применения защитной жидкости NanoProtech Electric в электрических цепях тягового двигателя, двигателя компрессора и пускотормозного реостата увеличилось сопротивление изоляции в 8÷10 раз при положительных значениях температуры окружающей среды, при отрицательной температуре сопротивление изоляции в электрических цепях снизилось, что закономерно.
- 2. Наблюдения за состоянием электрооборудования, обработанное жидкостью NanoProtech Electric будут продолжены.

Главный инженер СПб ГУП «Горэлектротранс»

(Alth)

Ф.И. Цветков

Морозов И.И. 9: 14128

Ber.